
1. Overview

The DxP Protocol is packet based protocol designed to be extensible. This protocol is transmitted over via
TCP on a port selected by the user. The factory default port is 9100.

The protocol uses a Hello handshake to establish unique sequence numbers to allow for advanced security
when AES encryption is used. With AES enabled, all messages must be encrypted with the AES Passphrase
set in the device.

After the Hello, a Command and Response sequence follows. Any number of Command – Response
sequences are permitted after Hello.

2. Hello Handshake

The client sends a Hello message in the form of the text string ‘hello-000’. The DxP enabled device will
respond with a packet containing the unsigned 16 bit sequence number. This sequence number is
incremented by the client and server with each correct packet sent.

2.1. EXAMPLE
Client� � Server
hello�000��
�

�

� � 1234�(seq�1234)

Command�
(seq�1235)�

�

� � Response
Command�
(seq�1237)�

�

� � Response

DxP Protocol
Version 1.2

 DxP Protocol Page 2

Version 1.2

3. DxP Packet

The packet is broken up into 2 parts. The first part is the header and the second is the payload. Each of
these elements are described below.

3.1. Header
The header is used to carry general information such as shown in the ‘C’ programming structure below;
typedef struct {
 eCmnd command;
 char[21] uName;
 char[21] password;
 uChar desc;
 uChar param;
 uint16 seq;
}THeader

command
The command variable is and enumerated type that tells the DxP server what class of command is being
sent. See Commands for a full list of command classes..

uName
This variable is reserved for future use. It will contain the user name of a user on the ipIO that is being
accessed.

password
This variable is reserved for future use. It will contain the password of the user above.

desc
This variable is the command descriptor that describes the individual command within a command class.
By extension it lets the server know what the payload is. There is a different set of descriptors for each
command class. See Descriptors for a full list of descriptors by command class.

param
This is an optional parameter that can be passed to the server in addition to the descriptor. Reserved for
future use.

seq
This is the packets sequence number. It is used as part of the security scheme.

3.2. Payload
The payload is determined by a combination of the command class and the descriptor. The payloads are
described with the descriptor. See descriptors for derails.

 DxP Protocol Page 3

Version 1.2

4. Commands

Currently there are 7 command classes. All classes are defined in the ‘C’ programming enumerated type
definition below.
typedef enum {
 eCmnd_null,
 eCmnd_set,
 eCmnd_get,
 eCmnd_io,
 eCmnd_keepAlive,
 eCmnd_rss,
 eCmnd_rcu
} eCmnd;

0 eCmnd_null�
This�is�a�null�command�and�should�not�be�sent�to�the�server.�

1 eCmnd_set�
� This�command�is�used�to�set�programmable�variables�on�the�server�
2 eCmnd_get�
� This�command�is�used�to�get�programmable�variables�from�the�server.�
3 eCmnd_io�
� This�command�is�used�to�monitor�and�control�the�I/O�on�the�server.�
4 eCmnd_keepAlive�
� This� command� is� sent� to� the� server� as� a�means�of� the� client� validating� the� communications�path� to� the�
� server.�
5 eCmnd_rss�
� This�command�class�is�used�to�control�the�RSS�nest�using�the�RCU.��
6 eCmnd_rcu�
� This�command�class�is�used�to�update�the�display�of�the�RCU.�

Note: The RSS and RCU commands were added for a specific project and are not for general use.

5. Descriptors

Descriptors are used to describe the individual command with in a command class and the payload that the
packet contains. All of the descriptors and their payloads are outlined by command class below.

5.1. eCmnd_set
The descriptors for this command class will be product specific.

5.2. eCmns_get
The descriptors for this command class will be product specific.

 DxP Protocol Page 4

Version 1.2

5.3. eCmnd_io
typedef enum {
 eIO_null,
 eIO_changeRelay,
 eIO_changeRelays,
 eIO_getRelay,
 eIO_getRelays,
 eIO_getInput,
 eIO_getInputs,
 eIO_pulseRelay,
}eIO;

eIO_changeRelay
This command is used to change the status of an individual relay. It carries the TChangeRelay payload.
See Payloads for details. The server will respond to this command with a single byte of 0 or 1. 0 if the
command was successful, and 1 if there was an error;

eIO_changeRelays
This command is used to set ALL of the relays on a device. It carries the TChangeRelays payload. See
Payloads for details. The server will respond to this command with a single byte of 0 or 1. 0 if the
command was successful and 1 if there was an error.

eIO_getRelay
This command has not yet been implemented

eIO_getRelays
This command is used to get the status of all the relays on the server. The server will respond with an array
of bytes containing the status of each relay. The size of the array is dependent on the number of relays on
the server.

eIO_getInput
This command is not yet implemented.

eIO_getIputs
This command is used to get the status of all input on the server. The server will return an array of bytes
containing the status of each input on the server. The size of the array returned is dependent on the
number of inputs on the server.

eIO_pulseRelay
This command is used to pulse a relay. It carries the TPulseRelay payload. The server responds with a
single byte of either 0 or 1, 0 upon success and 1 upon failure.

 DxP Protocol Page 5

Version 1.2

5.4. eCmnd_keepAlive
typedef enum {
 eKeepAlive_null;
} eKeepAlive;

0 – eKeepAlive_null
This is the only valid descriptor that the keep alive command supports. It is define as null as it carries no
payload. The server responds with a single byte of 0 or 1, 0 upon success and 1 upon failure.

5.5. eCmnd_rss
These commands are sent from the RCU to the RSS.
typedef enum {
 eRss_null,
 eRss_switch,
 eRss_lock,
 eRss_unlock,
 eRss_querry
}eRss;

1 – eRss_switch
This command is sent to the RSS when an operator has pressed and released an RCU switch to either the
A or B position. It carries the TSwitch payload. The server responds with an array of bytes containing the
status of all 16 switches.

2- eRss_lock
This command is sent to the RSS when the operator has held an RCU switch in either the A or B position
for more than 3 seconds. Upon receipt of this command the RSS will lock the selected card. This
command carries tSwitch as its payload. The server responds with an array of bytes containing the status of
all 16 switches.

3 – eRss_unlock
This command is sent to the RSS when the operator has pressed and released the switch of a looked card
to either the A or B position. Upon receipt of this command the RSS will unlock the selected card. This
command carries tSwitch as its payload. The server responds with an array of bytes containing the status of
all 16 switches.

4 – eRss_query
This command is sent to the RSS every X seconds to keep the RCU in sync with the RSS

 DxP Protocol Page 6

Version 1.2

5.6. eCmnd_rcu
typedef enum {
 eRcu_null,
 eRcu_statusUpdate,
 eRcu_frontPanel,
 eRcu_rcu,
 eRcu_autoSwitch,
 eRcu_manualSwitch
} eRcu;

1 – eRcu_statusUpdate
This command is sent from the RSS controller to the RCU whenever one of the following changes

1. Control�is�changed�to�NMO�
2. Control�is�changed�to�Front�Panel�
3. Control�id�changed�to�RCU�
4. A�switch�changes�position�regardless�of�the�cause�(manual/automatic).�
5. A�switch�is�locked.�

The command carries the TSwitchStatus structure as its payload.

 DxP Protocol Page 7

Version 1.2

6. Payloads

6.1. TChangeRelay
typedef struct{
 unsigned char relay;

unsigned char state;
}TChangeRelay;

Where relay is the number of the relay to be affected-1 (i.e. 0 for relay 1 and 1 for relay 2)and state sets the
state of the relay, 1=Energize 2=Relax.

6.2. TChangeRelays
typeded struct{
 unsigned char relayStates[32];
}TChangeRelays;

Where relayStates is an array of relay states as defined below:

#define NO_CHANGE 0
#define ENERGIZE 1
#define RELAX 2

This payload is supported by devices that support the DxP protocol with 2-32 controllable relays.

6.3. TPulseRelay
typedef struct {
 unsigned char relay; //the relay to be pulsed
 unsigned char state; //the state to pulse
 uint16 pulseWidth; //the pulse width in seconds
}TPulseRelay;

Where relay is the number of the relay to be affected, state is the state to pulse, and pulseWidth is the time
to pulse for in seconds.

6.4. TSwitch
typedef sruct {
 unsigned char card; //the card to be switched
 unsigned char pos; //position to put the card in
} TSwitch;

Where card is the number of the card to be switched (1-16) and post is the position to place the card in
(0=A 1=B).

6.1. TSwitchStatus
typedef struct {
 unsigned char status[16]; //The status of all 16 cards
}
#define SWITCH_STATUS_A 0x00
#define SWITCH_STATUS_B 0x01
#define SWITCH_STATUS_LOCK 0x02
#define SWITCH_STATUS_UNLOCK 0x00
#define SWITCH_STATUS_NMO 0x04
#define SWITCH_STATUS_RCU 0x08
#define SWITCH_STATUS_FRONTPANEL 0x10
#define SWITCH_STATUS_NOCARD 0xFF

Where status is an array of bit fields used to reflect the status of each switch in the RSS nest. Slots without a
card will be SWITCH_STATUS_NOCARD

